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Our previous corresponding-states correlation for the second virial coefficient
of nonpolar fluids, based on the normal boiling point parameters, has been
employed to predict the equation of state of nonpolar fluid mixtures. The
analytical equation of state is that of Ihm, Song, and Mason, which requires
three temperature-dependent parameters, i.e., the second virial coefficient,
a scaling constant for softness of repulsive forces, and a van der Waals
covolume. In the previous work, we showed that the temperature-dependent
parameters could be calculated by knowing the boiling point constants. In this
work, it is shown that using a simple geometric mean for the boiling point tem-
perature and an arithmetic mean for the liquid density at the normal boiling
point is sufficient to determine the temperature-dependent parameters for mix-
tures. The equation of state has been utilized to calculate the liquid density of
several nonpolar fluid mixtures. The agreement with experiment is good.

KEY WORDS: compressed fluids; corresponding states; equation of state;
second virial coefficient.

1. INTRODUCTION

The thermodynamic properties of fluids and fluid mixtures are important in
model development and engineering applications. Although reliable experi-
mental data may be preferable to values obtained by estimation methods,
all too often reliable experimental data are not available. A central problem
in the theory of fluids and fluid mixtures is the explanation of their thermo-
dynamic properties in terms of intermolecular forces. One of the funda-
mental approaches to this problem is through the formulation of an accurate



equation of state, whereby the thermodynamic functions can be easily
determined.

The most significant theoretical advances in recent years have been the
development of statistical–mechanical perturbation theories [1, 2], which
are based on the recognition that the structure of a dense fluid is deter-
mined primarily by the intermolecular repulsive forces. The hard-sphere
fluid can thus be taken as a reference system, and the influence of attractive
forces and the softness of repulsions can be considered as perturbations.

Work by Ihm, Song, and Mason on the statistical–mechanical theory
of the equation of state for fluids has yielded accurate results for both pure
liquids [3–5] and their mixtures [6–8]. Knowing the intermolecular forces,
one may employ this equation of state. However, the equation can be used
with less input information than the full intermolecular forces [9]. Very
recently, we proposed an empirical corresponding-states correlation for the
second virial coefficient of nonpolar fluids [10]. In particular, we have
shown that two scaling constants, the normal boiling point temperature
(to make a dimensionless temperature) and the liquid density at the boiling
point (to form a dimensionless second virial coefficient), are sufficient to
correlate the second virial coefficient of nonpolar fluids with reasonable
accuracy. We have employed this correlation to predict the equation of
state of a large number of nonpolar fluids including noble gases, diatomic
molecules, saturated hydrocarbons, and a number of aliphatic, aromatic,
and cyclic hydrocarbons [10]. The purpose of this work is to extend the
method for predicting the equation of state to nonpolar fluid mixtures.

2. THEORY

Starting from the pressure equation [11] and applying the Weeks–
Chandler–Andersen [2] decomposition of the potential energy function,
Song and Mason [3, 4] obtained an analytical equation of state of the form

p
rkT

=1−
(a−B2) r
1+0.22lbr

+
ar

1−lbr
(1)

for nonpolar and slightly polar fluids. Here p is the pressure, r is the molar
(number) density, B2 is the second virial coefficient, a is the contribution of
the repulsive forces to the second virial coefficient, b is a temperature-
dependent parameter analogous to the van der Waals covolume, kT is the
thermal energy of one molecule, and l is an adjustable parameter. The
parameters B2, a, and b are all temperature dependent and can be evaluated
by knowing the intermolecular forces. However, such forces are almost
never known with sufficient accuracy, except for noble gases [12]. In fact,

1782 Eslami



it is shown that there is no need to specify the potential energy function,
because knowledge of experimental second virial coefficient data is sufficient
to determine the other two temperature-dependent parameters, a and b, by
suitable scaling constants. Song and Mason [3, 13] showed that the exper-
imental second virial coefficient data can be used to calculate the Boyle
temperature and the Boyle volume. The Boyle volume can be used as a
source of the scaling constant for reducing a and b, and the Boyle temper-
ature can be used for reducing temperature. When reduced in this manner,
the dimensionless plots of a/vB and b/vB vs T/TB are universal functions,
and empirical formulas [13] and numerical tables [5] for these parameters
are available.

Another alternative to remedy this difficulty is the prediction of the
second virial coefficients using corresponding-states correlations. There
exist several corresponding-states correlations which may be used to cal-
culate the second virial coefficients, instead of knowing the full intermole-
cular potential or experimental second virial coefficients in a large range of
temperatures. One of these correlation schemes, developed by Pitzer and
Curl [14] for nonpolar fluids and later extended by Schreiber and Pitzer
[15] to nonpolar and slightly polar fluids, needs the critical parameters
plus the Pitzer acentric factor. The critical constants are not known for
many fluids, and the measured values are usually associated with a high
degree of uncertainty. Boushehri and Mason [16] proposed a correspond-
ing-states correlation for the second virial coefficient in terms of the latent
heat of vaporization, as the temperature reducing constant, and the liquid
density at the triple point, as the second virial coefficient reducing constant.
Another correlation was developed by Boushehri and Ghatee [17] in terms
of the surface tension and the liquid density at the freezing point. These
correlations have been used to predict the equation of state of nonpolar
fluids [16–18].

Recently, a corresponding-states correlation for the second virial coef-
ficient of nonpolar fluids was developed by Eslami [10], with even less
input information (the normal boiling point constants) than the others
[14–17]. The correlation has been employed [10] to predict the equation
of state of a large number of nonpolar fluids including noble gases, diatomic
molecules, saturated hydrocarbons, and a number of aliphatic, aromatic,
and cyclic hydrocarbons over a wide range of temperatures and pressures
with an accuracy of a few percent. Determination of temperature-depen-
dent parameters of the equation of state by this procedure also self-adjusts
the parameter l to 0.495 [10]. While the present method uses less input
information than the others and is easier to apply, it was shown that it has
nearly the same [16, 17] predictive power as the previous methods. Our
correlation reads
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B2rbp=1.033−3.0069 1Tbp
T
2−10.588 1Tbp

T
22+13.096 1Tbp

T
23

−9.8968 1Tbp
T
24 (2)

where rbp is the liquid density at the normal boiling temperature, Tbp.
Knowing the second virial coefficient from Eq. (2), the parameters a and b
can be calculated by rescaling the empirical formulas in Ref. 13 in terms of
normal boiling point constants. The results were shown to be of the form
[10]

arbp=a1 3exp 5−c1 1
T
Tbp
264+a2 31− exp 5−c2 1

Tbp
T
21/464 (3)

and

brbp=a1 51−c1 1
T
Tbp
26 exp 5−c1 1

T
Tbp
26

+a2 31−51+0.25c2 1
Tbp
T
21/46 exp 5−c2 1

Tbp
T
21/464 (4)

where

a1=−0.0860, c1=0.5624

a2=2.3988, c2=1.4267

Specifying the temperature-dependent parameters in this manner, we have
shown [10] that the equation of state can be put in a much simpler form:

p
rkT

=1−
(a−B2) r
1+0.11br

+
ar

1−0.495br
(5)

Equation (1) for pure fluids was also extended to mixtures by Ihm,
Song, and Mason [6–8]. In the final form, the equation of state for mix-
tures takes the form [6]

p
rkT

=1+r C
ij
xixj[(B2)ij−aij] Fij+r C

ij
xixjaijGij (6)
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with

Fij=
1

1−z3
−1didj

dij
2 1

6 pr;k xkd
2
k(4dk+1)

(1−z3)(1+
2
3 pr;k xkd

3
kdk)

(7)

Gij=
1

1−z3
+1didj

dij
2 1

6 pr;k xkd
2
k(4lk−1)

(1−z3)(1−
2
3 pr;k xkd

3
klk)

(8)

and

z3 —
1
6 pr C

k
xkd

3
k (9)

where xi and xj are mole fractions of the components, dk=0.22lk, Gij is
the pair distribution function, and the summation runs over all components
of the mixture. The parameters (B2)ij, aij, and bij are all related to the
intermolecular potential between ij components, and the parameter dij is
related to bij via the relation

bij=
2
3 pd

3
ij (10)

The present method for calculating the second virial coefficient and
the other two temperature-dependent parameters can be extended to mix-
tures by using a simple arithmetic mean for the boiling point temperature
and a geometric mean for the liquid density at the boiling point; i.e.,

(Tbp)ij=[(Tbp)i (Tbp)j]1/2 (11)

and

(rbp)ij=
1
2 [(rbp)

−1/3
i +(rbp)

−1/3
j ]1/3 (12)

The purpose of this work is to calculate the temperature-dependent
parameters from Eqs. (2)–(4), (11), and (12) and apply the equation of state
for the calculation of the liquid density of mixtures with minimum input
information.

3. RESULTS AND DISCUSSION

The present correlation for the calculation of the second virial coeffi-
cient of mixtures has been used to predict the equation of state of nonpolar
fluid mixtures. We have selected several binary and ternary mixtures
including mixtures of noble gases, diatomics, and a number of hydrocar-
bons to check the accuracy of the method. It is known that molar excess
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volumes are very sensitive to small differences in the values used in their
calculations [19]. Therefore, we have chosen molar volume data for com-
paring the predictive ability of the present formulation with experiment.

The calculated molar volume data for mixtures of Ar–Kr and Kr–Xe
are compared with experiment [20, 21] in Fig. 1. Also, the liquid density of
quasi-equimolar binary mixtures of Ar–Ne, Ar–Kr, and Ar–Xe at 298.15 K
are calculated over a wide range of pressures up to 8000 bar and are
compared with experiment [22] in Fig. 2. The calculated r–p isotherms for
CH4–CF4 binary mixtures are shown in Figs. 3 and 4 and are compared
with the experimental values of Douslin et al. [23]. Figure 5 shows the
calculated compressibility factor isotherms for a ternary mixture of N2–
CH4–C2H6 compared with experiment [24]. The equation of state has also
been tested for the prediction of the liquid density of hydrocarbons. The
liquid density of cyclo-C6H12/n-C6H14 and that of toluene/n-C8H18 binary
mixtures, at 1 bar and 298.15 K over the entire concentration range, are
compared in Fig. 6 with experimental data [25, 26].

To compare the present method with others, deviation plots for the
calculated liquid densities of benzene/n-C6H14 and benzene/n-C8H18 mix-
tures, compared with the corresponding-states liquid densities (COSTALD)
of Thomson et al. [27], are given in Figs. 7 and 8, respectively. The results
for these mixtures are also compared with the previous equations [18, 28],
based on correlating second virial data in terms of the heat of vaporization
[16] and the surface tension [17]. Furthermore, the present method has
been compared with the saturated liquid density correlation of Iglesias-
Silva and Hall [29], which has recently been extended to mixtures by
Nasrifar et al. [30]. The predicted results from the present scheme and the
corresponding-states correlation of Nasrifar et al. [30] for the orthobaric
liquid densities of cyclo-C6H12/n-C6H14, toluene/n-C8H18, C2H6–C3H8, and
R-32/R-134a mixtures are compared with experimental data [25, 26, 31,
32] in Figs. 9 and 10. Although our results are less accurate than the
method of Nasrifar et al. [30], their method needs the values of the critical
constants, triple-point parameters, acentric factor, an adjustable parameter,
and six mixing rules for the mixtures, while our method is easier to apply.

The agreement of the predicted results with experimental data in all
cases is within ±5%. Unlike most conformal solution theories, this equa-
tion of state does not seem to deteriorate when the size and energy param-
eters of components are varied. The equation of state is simple in form and
easy for practical applications. The parameters can be obtained from
knowing just the normal boiling point constants. The procedure, outlined
here, shows that pvT properties of nonpolar fluid mixtures can be obtained
with reasonable accuracy from just two scaling constants, Tbp and rbp,
without knowing any details of the intermolecular forces. However, since
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Fig. 1. Deviation plot for the density of Ar–Kr mixtures
at 134.32 K [20] and Kr–Xe mixtures at 190.01 K [21] vs
pressure. 0.277Ar+0.723Kr (J), 0.485Ar+0.515Kr (I),
0.689Ar+0.302Kr (§), 0.319Kr+0.681Xe (N), 0.556Kr+
0.444Xe (j), and 0.707Kr+0.293Xe (i).

Fig. 2. Molar density of 0.499Ar+0.501Ne (I), 0.5095Ar
+0.4905Kr (N), and 0.5016Ar+0.4984Xe (§) vs pressure
at 298.15 K. The curves represent our calculated values, and
the symbols are experimental values [22].
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Fig. 3. Molar density of 0.25CH4+0.75CF4 versus pressure at
323.15 K (N), 473.15 K (I), and 623.15 K (J). The curves are
from the present equation of state, and the symbols are the
experimental values [23].

Fig. 4. Same as Fig. 3 for 0.75CH4+0.25CF4.
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Fig. 5. Compressibility factor vs pressure for 0.1209N2+
0.6265CH4+0.2526C2H6 at 275 K (I) and 345 K (N). The
curves are from this work, and the symbols represent the exper-
imental values [24].

Fig. 6. Molar density for binary mixtures of x[cyclo-C6H12]+
(1−x)[n-C6H14] (I) and x[C7H8]+(1−x)[n-C8H18] (N) at 1 bar
and 298.15 K. The curves and symbols represent the results from
the present equation of state and from experiment [25, 26],
respectively.
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Fig. 7. Deviation plots for the calculated molar density
of 0.5C6H6+0.5n-C6H14 compared with the COSTALD
method [27]. The filled symbols show the calculated
values from Ref. 28 at 15 bar (N), 100 bar (I), and
400 bar (§) while the corresponding open symbols are
from Ref. 18. The curves represent our predicted values
at 15 bar ( · · · ), 100 bar (– –), and 400 bar (—).

Fig. 8. Deviation plots for x[C6H6]+(1−x)[n-C8H18]
mixtures at 373.15 K compared with the COSTALD
method [27]. The filled symbols show the calculated
values from Ref. 28 at 15 bar (N) and 100 bar (I), and
the corresponding open symbols are from Ref. 18. The
curves represent our predicted values at 15 bar (—) and
100 bar (– –).
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Fig. 9. Deviationplotforthedensityofx[cyclo-C6H12]+
(1−x)[n-C6H14] (I) and x[C7H8]+(1−x)[n-C8H18]
(N) at 1 bar and 298.15 K compared with experiment
[25, 26]. The filled and open symbols represent our
calculations and the results from corresponding-states
correlation of Nasrifar et al. [30], respectively.

Fig. 10. Deviation plot for the orthobaric liquid
density of 0.5015C2H6+0.4985C3H8 (I) and 0.3955R-
32+0.6045R-134a (J) compared with experiment [31,
32]. The filled and open symbols represent our calcula-
tions and the results from corresponding-states correla-
tion of Nasrifar et al. [30], respectively.
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the underlying theory is based on a mean-field approximation, it is not
accurate in the two-phase and critical regions. Therefore, we do not
recommend the present scheme for the calculation of vapor pressures or
critical constants.

Although the compounds studied in this work have a variety of
complexities, and hence different intermolecular forces, Eqs. (3) and (4) for
a and b, respectively, which have been obtained [13] using the results for a
simple Lennard–Jones potential, can still well reproduce the experimental
data. The reason is that the parameters a and b depend only on the repul-
sive branch of the potential energy function and are insensitive to the
details of the intermolecular forces [5].

Finally, the present method does not need the critical parameters,
which are scarce for many substances and are subject to higher experimen-
tal uncertainties than those of the normal boiling point parameters. Also, it
does not need such properties as the heat of vaporization [16] or surface
tension [17]. Furthermore, the present equation of state is simpler than the
others [16–18, 28] in that the parameters li are all equal and set to 0.495.
Comparison of our calculated results in Figs. 7–10 with those obtained by
the previous methods [18, 28, 30] reveals that the present scheme is a
satisfactory method for pvT data prediction of mixtures.
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